Generalized projections, decompositions, and the Pythagorean-type theorem in Banach spaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Pythagorean Approach in Banach Spaces

Let X be a Banach space and let S(X)= {x ∈ X , ‖x‖ = 1} be the unit sphere of X . Parameters E(X) = sup{α(x), x ∈ S(X)}, e(X) = inf{α(x), x ∈ S(X)}, F(X) = sup{β(x), x ∈ S(X)}, and f (X) = inf{β(x), x ∈ S(X)}, where α(x) = sup{‖x + y‖2 + ‖x − y‖2, y ∈ S(X)}, and β(x) = inf{‖x + y‖2 + ‖x− y‖2, y ∈ S(X)} are introduced and studied. The values of these parameters in the lp spaces and function spac...

متن کامل

Generalized Projections in Banach Algebras

In this note we investigate generalized projections in Banach algebras. Our results generalize results obtained for bounded linear operators on Hilbert spaces.

متن کامل

Generalized Uniqueness Theorem for Ordinary Differential Equations in Banach Spaces

We consider nonlinear ordinary differential equations in Banach spaces. Uniqueness criterion for the Cauchy problem is given when any of the standard dissipative-type conditions does apply. A similar scalar result has been studied by Majorana (1991). Useful examples of reflexive Banach spaces whose positive cones have empty interior has been given as well.

متن کامل

Kneser - type theorem for the Darboux problem in Banach spaces

In this paper we study the Darboux problem in some class of Banach spaces. The right-hand side of this problem is a Pettis-integrable function satisfying some conditions expressed in terms of measures of weak noncompactness. We prove that the set of all local pseudo-solutions of our problem is nonempty, compact and connected in the space of continuous functions equipped with the weak topology.

متن کامل

Banach Spaces with Many Projections

A fundamental question in operator theory is: how rich is the collection of oprrators on a given Banach space? For classical spaces, especially Hilbert space, a well developed theory of operators exists. However a Banach space may have far fewer operators than one might expect. Shelah [S] has constructed a nonseparable Ba~lach space X , for which the space of operators with separable range has ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics Letters

سال: 1998

ISSN: 0893-9659

DOI: 10.1016/s0893-9659(98)00112-8